123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579 |
- # python-cc1101 - Python Library to Transmit RF Signals via C1101 Transceivers
- #
- # Copyright (C) 2020 Fabian Peter Hammerle <fabian@hammerle.me>
- #
- # This program is free software: you can redistribute it and/or modify
- # it under the terms of the GNU General Public License as published by
- # the Free Software Foundation, either version 3 of the License, or
- # any later version.
- #
- # This program is distributed in the hope that it will be useful,
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- # GNU General Public License for more details.
- #
- # You should have received a copy of the GNU General Public License
- # along with this program. If not, see <https://www.gnu.org/licenses/>.
- import contextlib
- import enum
- import logging
- import math
- import typing
- import spidev
- from cc1101.addresses import (
- StrobeAddress,
- ConfigurationRegisterAddress,
- StatusRegisterAddress,
- FIFORegisterAddress,
- )
- from cc1101.options import PacketLengthMode, SyncMode, ModulationFormat
- _LOGGER = logging.getLogger(__name__)
- class Pin(enum.Enum):
- GDO0 = "GDO0"
- class _TransceiveMode(enum.IntEnum):
- """
- PKTCTRL0.PKT_FORMAT
- """
- FIFO = 0b00
- SYNCHRONOUS_SERIAL = 0b01
- RANDOM_TRANSMISSION = 0b10
- ASYNCHRONOUS_SERIAL = 0b11
- class MainRadioControlStateMachineState(enum.IntEnum):
- """
- MARCSTATE - Main Radio Control State Machine State
- """
- # see "Figure 13: Simplified State Diagram"
- # and "Figure 25: Complete Radio Control State Diagram"
- IDLE = 0x01
- STARTCAL = 0x08 # after IDLE
- BWBOOST = 0x09 # after STARTCAL
- FS_LOCK = 0x0A
- RX = 0x0D
- RXFIFO_OVERFLOW = 0x11
- TX = 0x13
- # TXFIFO_UNDERFLOW = 0x16
- class CC1101:
- # > All transfers on the SPI interface are done
- # > most significant bit first.
- # > All transactions on the SPI interface start with
- # > a header byte containing a R/W bit, a access bit (B),
- # > and a 6-bit address (A5 - A0).
- # > [...]
- # > Table 45: SPI Address Space
- _WRITE_SINGLE_BYTE = 0x00
- # > Registers with consecutive addresses can be
- # > accessed in an efficient way by setting the
- # > burst bit (B) in the header byte. The address
- # > bits (A5 - A0) set the start address in an
- # > internal address counter. This counter is
- # > incremented by one each new byte [...]
- _WRITE_BURST = 0x40
- _READ_SINGLE_BYTE = 0x80
- _READ_BURST = 0xC0
- # 29.3 Status Register Details
- _SUPPORTED_PARTNUM = 0
- _SUPPORTED_VERSION = 0x14
- _CRYSTAL_OSCILLATOR_FREQUENCY_HERTZ = 26e6
- # see "21 Frequency Programming"
- # > f_carrier = f_XOSC / 2**16 * (FREQ + CHAN * ((256 + CHANSPC_M) * 2**CHANSPC_E-2))
- _FREQUENCY_CONTROL_WORD_HERTZ_FACTOR = _CRYSTAL_OSCILLATOR_FREQUENCY_HERTZ / 2 ** 16
- def __init__(self) -> None:
- self._spi = spidev.SpiDev()
- @staticmethod
- def _log_chip_status_byte(chip_status: int) -> None:
- # see "10.1 Chip Status Byte" & "Table 23: Status Byte Summary"
- _LOGGER.debug(
- "chip status byte: CHIP_RDYn=%d STATE=%s FIFO_BYTES_AVAILBLE=%d",
- chip_status >> 7,
- bin((chip_status >> 4) & 0b111),
- chip_status & 0b1111,
- )
- def _read_single_byte(
- self, register: typing.Union[ConfigurationRegisterAddress, FIFORegisterAddress]
- ) -> int:
- response = self._spi.xfer([register | self._READ_SINGLE_BYTE, 0])
- assert len(response) == 2, response
- self._log_chip_status_byte(response[0])
- return response[1]
- def _read_burst(
- self,
- start_register: typing.Union[ConfigurationRegisterAddress, FIFORegisterAddress],
- length: int,
- ) -> typing.List[int]:
- response = self._spi.xfer([start_register | self._READ_BURST] + [0] * length)
- assert len(response) == length + 1, response
- self._log_chip_status_byte(response[0])
- return response[1:]
- def _read_status_register(self, register: StatusRegisterAddress) -> int:
- # > For register addresses in the range 0x30-0x3D,
- # > the burst bit is used to select between
- # > status registers when burst bit is one, and
- # > between command strobes when burst bit is
- # > zero. [...]
- # > Because of this, burst access is not available
- # > for status registers and they must be accessed
- # > one at a time. The status registers can only be
- # > read.
- response = self._spi.xfer([register | self._READ_BURST, 0])
- assert len(response) == 2, response
- self._log_chip_status_byte(response[0])
- return response[1]
- def _command_strobe(self, register: StrobeAddress) -> None:
- # see "10.4 Command Strobes"
- _LOGGER.debug("sending command strobe 0x%02x", register)
- response = self._spi.xfer([register | self._WRITE_SINGLE_BYTE])
- assert len(response) == 1, response
- self._log_chip_status_byte(response[0])
- def _write_burst(
- self,
- start_register: typing.Union[ConfigurationRegisterAddress, FIFORegisterAddress],
- values: typing.List[int],
- ) -> None:
- _LOGGER.debug(
- "writing burst: start_register=0x%02x values=%s", start_register, values
- )
- response = self._spi.xfer([start_register | self._WRITE_BURST] + values)
- assert len(response) == len(values) + 1, response
- self._log_chip_status_byte(response[0])
- assert all(v == response[0] for v in response[1:]), response
- def _reset(self) -> None:
- self._command_strobe(StrobeAddress.SRES)
- def _get_symbol_rate_exponent(self) -> int:
- """
- MDMCFG4.DRATE_E
- """
- return self._read_single_byte(ConfigurationRegisterAddress.MDMCFG4) & 0b00001111
- def _set_symbol_rate_exponent(self, exponent: int):
- mdmcfg4 = self._read_single_byte(ConfigurationRegisterAddress.MDMCFG4)
- mdmcfg4 &= 0b11110000
- mdmcfg4 |= exponent
- self._write_burst(
- start_register=ConfigurationRegisterAddress.MDMCFG4, values=[mdmcfg4]
- )
- def _get_symbol_rate_mantissa(self) -> int:
- """
- MDMCFG3.DRATE_M
- """
- return self._read_single_byte(ConfigurationRegisterAddress.MDMCFG3)
- def _set_symbol_rate_mantissa(self, mantissa: int) -> None:
- self._write_burst(
- start_register=ConfigurationRegisterAddress.MDMCFG3, values=[mantissa]
- )
- @classmethod
- def _symbol_rate_floating_point_to_real(cls, mantissa: int, exponent: int) -> float:
- # see "12 Data Rate Programming"
- return (
- (256 + mantissa)
- * (2 ** exponent)
- * cls._CRYSTAL_OSCILLATOR_FREQUENCY_HERTZ
- / (2 ** 28)
- )
- @classmethod
- def _symbol_rate_real_to_floating_point(cls, real: float) -> typing.Tuple[int, int]:
- # see "12 Data Rate Programming"
- assert real > 0, real
- exponent = math.floor(
- math.log2(real / cls._CRYSTAL_OSCILLATOR_FREQUENCY_HERTZ) + 20
- )
- mantissa = round(
- real * 2 ** 28 / cls._CRYSTAL_OSCILLATOR_FREQUENCY_HERTZ / 2 ** exponent
- - 256
- )
- if mantissa == 256:
- exponent += 1
- mantissa = 0
- assert 0 < exponent <= 2 ** 4, exponent
- assert mantissa <= 2 ** 8, mantissa
- return mantissa, exponent
- def get_symbol_rate_baud(self) -> float:
- return self._symbol_rate_floating_point_to_real(
- mantissa=self._get_symbol_rate_mantissa(),
- exponent=self._get_symbol_rate_exponent(),
- )
- def set_symbol_rate_baud(self, real: float) -> None:
- # > The data rate can be set from 0.6 kBaud to 500 kBaud [...]
- mantissa, exponent = self._symbol_rate_real_to_floating_point(real)
- self._set_symbol_rate_mantissa(mantissa)
- self._set_symbol_rate_exponent(exponent)
- def get_modulation_format(self) -> ModulationFormat:
- mdmcfg2 = self._read_single_byte(ConfigurationRegisterAddress.MDMCFG2)
- return ModulationFormat((mdmcfg2 >> 4) & 0b111)
- def _set_modulation_format(self, modulation_format: ModulationFormat) -> None:
- mdmcfg2 = self._read_single_byte(ConfigurationRegisterAddress.MDMCFG2)
- mdmcfg2 &= ~(modulation_format << 4)
- mdmcfg2 |= modulation_format << 4
- self._write_burst(ConfigurationRegisterAddress.MDMCFG2, [mdmcfg2])
- def enable_manchester_code(self) -> None:
- """
- MDMCFG2.MANCHESTER_EN
- Enable manchester encoding & decoding.
- """
- mdmcfg2 = self._read_single_byte(ConfigurationRegisterAddress.MDMCFG2)
- mdmcfg2 |= 0b1000
- self._write_burst(ConfigurationRegisterAddress.MDMCFG2, [mdmcfg2])
- def get_sync_mode(self) -> SyncMode:
- mdmcfg2 = self._read_single_byte(ConfigurationRegisterAddress.MDMCFG2)
- return SyncMode(mdmcfg2 & 0b11)
- def set_sync_mode(self, mode: SyncMode) -> None:
- """
- MDMCFG2.SYNC_MODE
- see "14.3 Byte Synchronization"
- """
- mdmcfg2 = self._read_single_byte(ConfigurationRegisterAddress.MDMCFG2)
- mdmcfg2 &= 0b11111100
- mdmcfg2 |= mode
- self._write_burst(ConfigurationRegisterAddress.MDMCFG2, [mdmcfg2])
- def _set_power_amplifier_setting_index(self, setting_index: int) -> None:
- """
- FREND0.PA_POWER
- > This value is an index to the PATABLE,
- > which can be programmed with up to 8 different PA settings.
- > In OOK/ASK mode, this selects the PATABLE index to use
- > when transmitting a '1'.
- > PATABLE index zero is used in OOK/ASK when transmitting a '0'.
- > The PATABLE settings from index 0 to the PA_POWER value are
- > used for > ASK TX shaping, [...]
- see "Figure 32: Shaping of ASK Signal"
- > If OOK modulation is used, the logic 0 and logic 1 power levels
- > shall be programmed to index 0 and 1 respectively.
- """
- frend0 = self._read_single_byte(ConfigurationRegisterAddress.FREND0)
- frend0 &= 0b000
- frend0 |= setting_index
- self._write_burst(ConfigurationRegisterAddress.FREND0, [setting_index])
- def __enter__(self) -> "CC1101":
- # https://docs.python.org/3/reference/datamodel.html#object.__enter__
- self._spi.open(0, 0)
- self._spi.max_speed_hz = 55700 # empirical
- self._reset()
- partnum = self._read_status_register(StatusRegisterAddress.PARTNUM)
- if partnum != self._SUPPORTED_PARTNUM:
- raise ValueError(
- "unexpected chip part number {} (expected: {})".format(
- partnum, self._SUPPORTED_PARTNUM
- )
- )
- version = self._read_status_register(StatusRegisterAddress.VERSION)
- if version != self._SUPPORTED_VERSION:
- raise ValueError(
- "unexpected chip version number {} (expected: {})".format(
- version, self._SUPPORTED_VERSION
- )
- )
- # 6:4 MOD_FORMAT: OOK (default: 2-FSK)
- self._set_modulation_format(ModulationFormat.ASK_OOK)
- self._set_power_amplifier_setting_index(1)
- self._disable_data_whitening()
- # 7:6 unused
- # 5:4 FS_AUTOCAL: calibrate when going from IDLE to RX or TX
- # 3:2 PO_TIMEOUT: default
- # 1 PIN_CTRL_EN: default
- # 0 XOSC_FORCE_ON: default
- self._write_burst(ConfigurationRegisterAddress.MCSM0, [0b010100])
- marcstate = self.get_main_radio_control_state_machine_state()
- if marcstate != MainRadioControlStateMachineState.IDLE:
- raise ValueError("expected marcstate idle (actual: {})".format(marcstate))
- return self
- def __exit__(self, exc_type, exc_value, traceback): # -> typing.Literal[False]
- # https://docs.python.org/3/reference/datamodel.html#object.__exit__
- self._spi.close()
- return False
- def get_main_radio_control_state_machine_state(
- self,
- ) -> MainRadioControlStateMachineState:
- return MainRadioControlStateMachineState(
- self._read_status_register(StatusRegisterAddress.MARCSTATE)
- )
- def get_marc_state(self) -> MainRadioControlStateMachineState:
- """
- alias for get_main_radio_control_state_machine_state()
- """
- return self.get_main_radio_control_state_machine_state()
- @classmethod
- def _frequency_control_word_to_hertz(cls, control_word: typing.List[int]) -> float:
- return (
- int.from_bytes(control_word, byteorder="big", signed=False)
- * cls._FREQUENCY_CONTROL_WORD_HERTZ_FACTOR
- )
- @classmethod
- def _hertz_to_frequency_control_word(cls, hertz: float) -> typing.List[int]:
- return list(
- round(hertz / cls._FREQUENCY_CONTROL_WORD_HERTZ_FACTOR).to_bytes(
- length=3, byteorder="big", signed=False
- )
- )
- def _get_base_frequency_control_word(self) -> typing.List[int]:
- # > The base or start frequency is set by the 24 bitfrequency
- # > word located in the FREQ2, FREQ1, FREQ0 registers.
- return self._read_burst(
- start_register=ConfigurationRegisterAddress.FREQ2, length=3
- )
- def _set_base_frequency_control_word(self, control_word: typing.List[int]) -> None:
- self._write_burst(
- start_register=ConfigurationRegisterAddress.FREQ2, values=control_word
- )
- def get_base_frequency_hertz(self) -> float:
- return self._frequency_control_word_to_hertz(
- self._get_base_frequency_control_word()
- )
- def set_base_frequency_hertz(self, freq: float) -> None:
- self._set_base_frequency_control_word(
- self._hertz_to_frequency_control_word(freq)
- )
- def __str__(self) -> str:
- attrs = (
- "marcstate={}".format(
- self.get_main_radio_control_state_machine_state().name.lower()
- ),
- "base_frequency={:.2f}MHz".format(
- self.get_base_frequency_hertz() / 10 ** 6
- ),
- "symbol_rate={:.2f}kBaud".format(self.get_symbol_rate_baud() / 1000),
- "modulation_format={}".format(self.get_modulation_format().name),
- "sync_mode={}".format(self.get_sync_mode().name),
- "packet_length{}{}B".format(
- "≤"
- if self.get_packet_length_mode() == PacketLengthMode.VARIABLE
- else "=",
- self.get_packet_length_bytes(),
- ),
- )
- return "CC1101({})".format(", ".join(attrs))
- def get_configuration_register_values(
- self,
- start_register: ConfigurationRegisterAddress = min(
- ConfigurationRegisterAddress
- ),
- end_register: ConfigurationRegisterAddress = max(ConfigurationRegisterAddress),
- ) -> typing.Dict[ConfigurationRegisterAddress, int]:
- assert start_register <= end_register, (start_register, end_register)
- values = self._read_burst(
- start_register=start_register, length=end_register - start_register + 1
- )
- return {
- ConfigurationRegisterAddress(start_register + i): v
- for i, v in enumerate(values)
- }
- def get_packet_length_bytes(self) -> int:
- """
- PKTLEN
- Packet length in fixed packet length mode,
- maximum packet length in variable packet length mode.
- > In variable packet length mode, [...]
- > any packet received with a length byte
- > with a value greater than PKTLEN will be discarded.
- """
- return self._read_single_byte(ConfigurationRegisterAddress.PKTLEN)
- def set_packet_length_bytes(self, packet_length: int) -> None:
- """
- see get_packet_length_bytes()
- """
- assert 1 <= packet_length <= 255, "unsupported packet length {}".format(
- packet_length
- )
- self._write_burst(
- start_register=ConfigurationRegisterAddress.PKTLEN, values=[packet_length]
- )
- def _disable_data_whitening(self):
- """
- PKTCTRL0.WHITE_DATA
- see "15.1 Data Whitening"
- > By setting PKTCTRL0.WHITE_DATA=1 [default],
- > all data, except the preamble and the sync word
- > will be XOR-ed with a 9-bit pseudo-random (PN9)
- > sequence before being transmitted.
- """
- pktctrl0 = self._read_single_byte(ConfigurationRegisterAddress.PKTCTRL0)
- pktctrl0 &= 0b10111111
- self._write_burst(
- start_register=ConfigurationRegisterAddress.PKTCTRL0, values=[pktctrl0]
- )
- def disable_checksum(self) -> None:
- """
- PKTCTRL0.CRC_EN
- Disable automatic 2-byte cyclic redundancy check (CRC) sum
- appending in TX mode and checking in RX mode.
- See "Figure 19: Packet Format".
- """
- pktctrl0 = self._read_single_byte(ConfigurationRegisterAddress.PKTCTRL0)
- pktctrl0 &= 0b11111011
- self._write_burst(
- start_register=ConfigurationRegisterAddress.PKTCTRL0, values=[pktctrl0]
- )
- def _get_transceive_mode(self) -> _TransceiveMode:
- pktctrl0 = self._read_single_byte(ConfigurationRegisterAddress.PKTCTRL0)
- return _TransceiveMode((pktctrl0 >> 4) & 0b11)
- def _set_transceive_mode(self, mode: _TransceiveMode) -> None:
- _LOGGER.info("changing transceive mode to %s", mode.name)
- pktctrl0 = self._read_single_byte(ConfigurationRegisterAddress.PKTCTRL0)
- pktctrl0 &= ~0b00110000
- pktctrl0 |= mode << 4
- self._write_burst(
- start_register=ConfigurationRegisterAddress.PKTCTRL0, values=[pktctrl0]
- )
- def get_packet_length_mode(self) -> PacketLengthMode:
- pktctrl0 = self._read_single_byte(ConfigurationRegisterAddress.PKTCTRL0)
- return PacketLengthMode(pktctrl0 & 0b11)
- def set_packet_length_mode(self, mode: PacketLengthMode) -> None:
- pktctrl0 = self._read_single_byte(ConfigurationRegisterAddress.PKTCTRL0)
- pktctrl0 &= 0b11111100
- pktctrl0 |= mode
- self._write_burst(
- start_register=ConfigurationRegisterAddress.PKTCTRL0, values=[pktctrl0]
- )
- def _flush_tx_fifo_buffer(self) -> None:
- # > Only issue SFTX in IDLE or TXFIFO_UNDERFLOW states.
- _LOGGER.debug("flushing tx fifo buffer")
- self._command_strobe(StrobeAddress.SFTX)
- def transmit(self, payload: bytes) -> None:
- """
- > In variable packet length mode [.set/get_packet_length_mode()],
- > the packet length is configured by the first byte [...].
- > The packet length is defined as the payload data,
- > excluding the length byte and the optional CRC.
- from "15.2 Packet Format"
- The most significant bit is transmitted first.
- """
- # see "15.2 Packet Format"
- # > In variable packet length mode, [...]
- # > The first byte written to the TXFIFO must be different from 0.
- packet_length_mode = self.get_packet_length_mode()
- packet_length = self.get_packet_length_bytes()
- if packet_length_mode == PacketLengthMode.VARIABLE:
- if not payload:
- raise ValueError("empty payload {!r}".format(payload))
- if payload[0] == 0:
- raise ValueError(
- "in variable packet length mode the first byte of the payload must not be null"
- + "\npayload: {!r}".format(payload)
- )
- if len(payload) > packet_length:
- raise ValueError(
- "payload exceeds maximum payload length of {} bytes".format(
- packet_length
- )
- + "\nsee .get_packet_length_bytes()"
- + "\npayload: {!r}".format(payload)
- )
- elif (
- packet_length_mode == PacketLengthMode.FIXED
- and len(payload) != packet_length
- ):
- raise ValueError(
- "expected payload length of {} bytes, got {}".format(
- packet_length, len(payload)
- )
- + "\nsee .set_packet_length_mode() and .get_packet_length_bytes()"
- + "\npayload: {!r}".format(payload)
- )
- marcstate = self.get_main_radio_control_state_machine_state()
- if marcstate != MainRadioControlStateMachineState.IDLE:
- raise Exception(
- "device must be idle before transmission (current marcstate: {})".format(
- marcstate.name
- )
- )
- self._flush_tx_fifo_buffer()
- self._write_burst(FIFORegisterAddress.TX, list(payload))
- _LOGGER.info(
- "transmitting 0x%s (%r)",
- "".join("{:02x}".format(b) for b in payload),
- payload,
- )
- self._command_strobe(StrobeAddress.STX)
- @contextlib.contextmanager
- def asynchronous_transmission(self) -> typing.Iterator[Pin]:
- """
- see "27.1 Asynchronous Serial Operation"
- >>> with cc1101.CC1101() as transceiver:
- >>> transceiver.set_base_frequency_hertz(433.92e6)
- >>> transceiver.set_symbol_rate_baud(600)
- >>> print(transceiver)
- >>> with transceiver.asynchronous_transmission():
- >>> # send digital signal to GDO0 pin
- """
- self._set_transceive_mode(_TransceiveMode.ASYNCHRONOUS_SERIAL)
- self._command_strobe(StrobeAddress.STX)
- try:
- # > In TX, the GDO0 pin is used for data input (TX data).
- yield Pin.GDO0
- finally:
- self._command_strobe(StrobeAddress.SIDLE)
- self._set_transceive_mode(_TransceiveMode.FIFO)
|