123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234 |
- """
- Python Library to Read FreeSurfer's Cortical Parcellation Anatomical Statistics
- ([lh]h.aparc(.*)?.stats)
- Freesurfer
- https://surfer.nmr.mgh.harvard.edu/
- >>> from freesurfer_stats import CorticalParcellationStats
- >>> stats = CorticalParcellationStats.read('tests/subjects/fabian/stats/lh.aparc.DKTatlas.stats')
- >>> stats.headers['CreationTime'].isoformat()
- '2019-05-09T21:05:54+00:00'
- >>> stats.headers['cvs_version']
- 'Id: mris_anatomical_stats.c,v 1.79 2016/03/14 15:15:34 greve Exp'
- >>> stats.headers['cmdline'][:64]
- 'mris_anatomical_stats -th3 -mgz -cortex ../label/lh.cortex.label'
- >>> stats.hemisphere
- >>> stats.whole_brain_measurements['estimated_total_intracranial_volume_mm^3']
- 0 1.670487e+06
- Name: estimated_total_intracranial_volume_mm^3, dtype: float64
- >>> stats.whole_brain_measurements['white_surface_total_area_mm^2']
- 0 98553
- Name: white_surface_total_area_mm^2, dtype: int64
- >>> stats.structural_measurements[['structure_name', 'surface_area_mm^2',
- ... 'gray_matter_volume_mm^3']].head()
- structure_name surface_area_mm^2 gray_matter_volume_mm^3
- 0 caudalanteriorcingulate 1472 4258
- 1 caudalmiddlefrontal 3039 8239
- 2 cuneus 2597 6722
- 3 entorhinal 499 2379
- 4 fusiform 3079 9064
- Copyright (C) 2019 Fabian Peter Hammerle <fabian@hammerle.me>
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- any later version.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <https://www.gnu.org/licenses/>.
- """
- import datetime
- import io
- import pathlib
- import re
- import typing
- import numpy
- import pandas
- from freesurfer_stats.version import __version__
- def _get_filepath_or_buffer(
- path: typing.Union[str, pathlib.Path]
- ) -> typing.Tuple[typing.Any, bool]: # (pandas._typing.FileOrBuffer, bool)
- # path_or_buffer: typing.Union[str, pathlib.Path, typing.IO[typing.AnyStr],
- # s3fs.S3File, gcsfs.GCSFile]
- # https://github.com/pandas-dev/pandas/blob/v0.25.3/pandas/io/parsers.py#L436
- # https://github.com/pandas-dev/pandas/blob/v0.25.3/pandas/_typing.py#L30
- (path_or_buffer, _, _, *instructions) = pandas.io.common.get_filepath_or_buffer(
- path
- )
- if instructions: # pragma: no cover
- # https://github.com/pandas-dev/pandas/blob/v0.25.3/pandas/io/common.py#L171
- assert len(instructions) == 1, instructions
- should_close = instructions[0]
- else: # pragma: no cover
- # https://github.com/pandas-dev/pandas/blob/v0.21.0/pandas/io/common.py#L171
- should_close = hasattr(path_or_buffer, "close")
- return path_or_buffer, should_close
- class CorticalParcellationStats:
- _HEMISPHERE_PREFIX_TO_SIDE = {"lh": "left", "rh": "right"}
- _GENERAL_MEASUREMENTS_REGEX = re.compile(
- r"^Measure \S+, ([^,\s]+),? ([^,]+), ([\d\.]+), (\S+)$"
- )
- _COLUMN_NAMES_NON_SAFE_REGEX = re.compile(r"\s+")
- def __init__(self):
- self.headers = (
- {}
- ) # type: typing.Dict[str, typing.Union[str, datetime.datetime]]
- self.whole_brain_measurements = (
- {}
- ) # type: typing.Dict[str, typing.Tuple[float, int]]
- self.structural_measurements = {} # type: typing.Union[pandas.DataFrame, None]
- @property
- def hemisphere(self) -> str:
- return self._HEMISPHERE_PREFIX_TO_SIDE[typing.cast(str, self.headers["hemi"])]
- @staticmethod
- def _read_header_line(stream: typing.TextIO) -> str:
- line = stream.readline()
- assert line.startswith("# ")
- return line[2:].rstrip()
- @classmethod
- def _read_column_header_line(
- cls, stream: typing.TextIO
- ) -> typing.Tuple[int, str, str]:
- line = cls._read_header_line(stream)
- assert line.startswith("TableCol"), line
- line = line[len("TableCol ") :].lstrip()
- index, key, value = line.split(maxsplit=2)
- return int(index), key, value
- def _read_headers(self, stream: typing.TextIO) -> None:
- self.headers = {}
- while True:
- line = self._read_header_line(stream)
- if line.startswith("Measure"):
- break
- if line:
- attr_name, attr_value_str = line.split(" ", maxsplit=1)
- attr_value_str = attr_value_str.lstrip()
- if attr_name in ["cvs_version", "mrisurf.c-cvs_version"]:
- attr_value = typing.cast(
- typing.Union[str, datetime.datetime],
- attr_value_str.strip("$").rstrip(),
- )
- elif attr_name == "CreationTime":
- attr_dt = datetime.datetime.strptime(
- attr_value_str, "%Y/%m/%d-%H:%M:%S-%Z"
- )
- if attr_dt.tzinfo is None:
- assert attr_value_str.endswith("-GMT")
- attr_dt = attr_dt.replace(tzinfo=datetime.timezone.utc)
- attr_value = attr_dt
- elif attr_name == "AnnotationFileTimeStamp":
- attr_value = datetime.datetime.strptime(
- attr_value_str, "%Y/%m/%d %H:%M:%S"
- )
- else:
- attr_value = attr_value_str
- self.headers[attr_name] = attr_value
- @classmethod
- def _format_column_name(cls, name: str, unit: str) -> str:
- column_name = name.lower()
- if unit not in ["unitless", "NA"]:
- column_name += "_" + unit
- return cls._COLUMN_NAMES_NON_SAFE_REGEX.sub("_", column_name)
- @classmethod
- def _parse_whole_brain_measurements_line(
- cls, line: str
- ) -> typing.Tuple[str, numpy.ndarray]:
- match = cls._GENERAL_MEASUREMENTS_REGEX.match(line)
- if not match:
- raise ValueError("unexpected line: {!r}".format(line))
- key, name, value, unit = match.groups()
- if (
- key == "SupraTentorialVolNotVent"
- and name.lower() == "supratentorial volume"
- ):
- name += " Without Ventricles"
- column_name = cls._format_column_name(name, unit)
- return column_name, pandas.to_numeric([value], errors="raise")
- @classmethod
- def _read_column_attributes(
- cls, num: int, stream: typing.TextIO
- ) -> typing.List[typing.Dict[str, str]]:
- columns = []
- for column_index in range(1, int(num) + 1):
- column_attrs = {} # type: typing.Dict[str, str]
- for _ in range(3):
- column_index_line, key, value = cls._read_column_header_line(stream)
- assert column_index_line == column_index
- assert key not in column_attrs
- column_attrs[key] = value
- columns.append(column_attrs)
- return columns
- def _read(self, stream: typing.TextIO) -> None:
- assert (
- stream.readline().rstrip()
- == "# Table of FreeSurfer cortical parcellation anatomical statistics"
- )
- assert stream.readline().rstrip() == "#"
- self._read_headers(stream)
- self.whole_brain_measurements = pandas.DataFrame()
- line = self._read_header_line(stream)
- while not line.startswith("NTableCols"):
- if line.startswith("BrainVolStatsFixed"):
- # https://surfer.nmr.mgh.harvard.edu/fswiki/BrainVolStatsFixed
- assert (
- line.startswith("BrainVolStatsFixed see ")
- or line == "BrainVolStatsFixed-NotNeeded because voxelvolume=1mm3"
- )
- self.headers["BrainVolStatsFixed"] = line[len("BrainVolStatsFixed-") :]
- else:
- column_name, value = self._parse_whole_brain_measurements_line(line)
- assert column_name not in self.whole_brain_measurements, column_name
- self.whole_brain_measurements[column_name] = value
- line = self._read_header_line(stream)
- columns = self._read_column_attributes(int(line[len("NTableCols ") :]), stream)
- assert self._read_header_line(stream) == "ColHeaders " + " ".join(
- c["ColHeader"] for c in columns
- )
- self.structural_measurements = pandas.DataFrame(
- (line.rstrip().split() for line in stream),
- columns=[
- self._format_column_name(c["FieldName"], c["Units"]) for c in columns
- ],
- ).apply(pandas.to_numeric, errors="ignore")
- @classmethod
- def read(cls, path: typing.Union[str, pathlib.Path]) -> "CorticalParcellationStats":
- path_or_buffer, should_close = _get_filepath_or_buffer(path)
- stats = cls()
- try:
- if hasattr(path_or_buffer, "readline"):
- # pylint: disable=protected-access
- stats._read(io.TextIOWrapper(path_or_buffer))
- else:
- with open(path_or_buffer, "r") as stream:
- # pylint: disable=protected-access
- stats._read(stream)
- finally:
- if should_close:
- path_or_buffer.close()
- return stats
|