Main.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248
  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #include <time.h>
  4. typedef struct {
  5. int fitness;
  6. int* data;
  7. } Square;
  8. Square* squares;
  9. long getNanos() {
  10. struct timespec t;
  11. clock_gettime(CLOCK_MONOTONIC, &t);
  12. return t.tv_nsec + t.tv_sec * 1000000000L;
  13. }
  14. int size = 0;
  15. int population = 0;
  16. int (*fitness)(int*) = NULL;
  17. int compare(const void* a, const void* b) {
  18. int ia = ((Square*)a)->fitness;
  19. int ib = ((Square*)b)->fitness;
  20. return ia < ib ? -1 : (ia > ib ? 1 : 0);
  21. }
  22. void sort() {
  23. qsort(squares, population, sizeof(Square), compare);
  24. }
  25. void mutate(int* data) {
  26. int a = rand() % (size * size);
  27. int b = rand() % (size * size);
  28. while(b == a) {
  29. b = rand() % (size * size);
  30. }
  31. int tmp = data[a];
  32. data[a] = data[b];
  33. data[b] = tmp;
  34. }
  35. void reproduce(const int* parent, Square* child) {
  36. int end = size * size;
  37. for(int i = 0; i < end; i++) {
  38. child->data[i] = parent[i];
  39. }
  40. mutate(child->data);
  41. child->fitness = fitness(child->data);
  42. }
  43. void init() {
  44. squares = malloc(sizeof(Square) * population);
  45. int end = size * size;
  46. for(int i = 0; i < population; i++) {
  47. squares[i].data = malloc(sizeof(int) * end);
  48. for(int k = 0; k < end; k++) {
  49. squares[i].data[k] = k + 1;
  50. }
  51. for(int k = 0; k < end; k++) {
  52. mutate(squares[i].data);
  53. }
  54. squares[i].fitness = fitness(squares[i].data);
  55. }
  56. }
  57. void clear() {
  58. for(int i = 0; i < population; i++) {
  59. free(squares[i].data);
  60. }
  61. free(squares);
  62. }
  63. int get(int* data, int x, int y) {
  64. return data[y * size + x];
  65. }
  66. int errorFactor(int e) {
  67. return e * e;
  68. }
  69. int getWanted() {
  70. return (size * (size * size + 1)) / 2;
  71. }
  72. int getSemiFitness(int* data) {
  73. int fitness = 0;
  74. int wanted = getWanted();
  75. for(int y = 0; y < size; y++) {
  76. int sum = 0;
  77. for(int x = 0; x < size; x++) {
  78. sum += get(data, x, y);
  79. }
  80. fitness += errorFactor(sum - wanted);
  81. }
  82. for(int x = 0; x < size; x++) {
  83. int sum = 0;
  84. for(int y = 0; y < size; y++) {
  85. sum += get(data, x, y);
  86. }
  87. fitness += errorFactor(sum - wanted);
  88. }
  89. return fitness;
  90. }
  91. int getDiagonalBase(int* data) {
  92. int diaA = 0;
  93. int diaB = 0;
  94. for(int i = 0; i < size; i++) {
  95. diaA += get(data, i, i);
  96. diaB += get(data, i, (size - 1) - i);
  97. }
  98. int wanted = getWanted();
  99. int fitness = errorFactor(diaA - wanted);
  100. fitness += errorFactor(diaB - wanted);
  101. return fitness;
  102. }
  103. int getNormalFitness(int* data) {
  104. return getSemiFitness(data) + getDiagonalBase(data);
  105. }
  106. int getPandiagonalBase(int* data) {
  107. int fitness = 0;
  108. int wanted = getWanted();
  109. for(int x = 0; x < size; x++) {
  110. int sumA = 0;
  111. int sumB = 0;
  112. for(int y = 0; y < size; y++) {
  113. sumA += get(data, (x + y) % size, y);
  114. sumB += get(data, (x - y + size) % size, y);
  115. }
  116. fitness += errorFactor(sumA - wanted);
  117. fitness += errorFactor(sumB - wanted);
  118. }
  119. return fitness;
  120. }
  121. int getAssociativeBase(int* data) {
  122. int fitness = 0;
  123. int wanted = size * size + 1;
  124. for(int x = 0; x < size; x++) {
  125. for(int y = 0; y < size; y++) {
  126. int sum = get(data, x, y) + get(data, size - x - 1, size - y - 1);
  127. fitness += errorFactor(sum - wanted);
  128. }
  129. }
  130. return fitness;
  131. }
  132. int getUltraFitness(int* data) {
  133. return getSemiFitness(data) + getPandiagonalBase(data) +
  134. getAssociativeBase(data);
  135. }
  136. int get2x2SquareBase(int* data) {
  137. int fitness = 0;
  138. int wanted = 2 * (size * size + 1);
  139. for(int x = 0; x < size; x++) {
  140. for(int y = 0; y < size; y++) {
  141. if(x % 2 == 0 && y % 2 == 0) {
  142. int sum = get(data, x, y) + get(data, x + 1, y) +
  143. get(data, x, y + 1) + get(data, x + 1, y + 1);
  144. fitness += errorFactor(sum - wanted);
  145. }
  146. }
  147. }
  148. return fitness;
  149. }
  150. int getPerfectDiagonalBase(int* data) {
  151. int fitness = 0;
  152. int wanted = size * size + 1;
  153. for(int x = 0; x < size / 2; x++) {
  154. for(int y = 0; y < size; y++) {
  155. int sum = get(data, x, y) +
  156. get(data, (x + size / 2) % size, (y + size / 2) % size);
  157. fitness += errorFactor(sum - wanted);
  158. }
  159. }
  160. return fitness;
  161. }
  162. int getMostPerfectFitness(int* data) {
  163. return getSemiFitness(data) + getPandiagonalBase(data) +
  164. get2x2SquareBase(data) + getPerfectDiagonalBase(data);
  165. }
  166. void print(Square* s) {
  167. printf("Fitness: %d\n", s->fitness);
  168. for(int y = 0; y < size; y++) {
  169. for(int x = 0; x < size; x++) {
  170. printf("%2d ", get(s->data, x, y));
  171. }
  172. putchar('\n');
  173. }
  174. putchar('\n');
  175. }
  176. int main(int argAmount, char** args) {
  177. if(argAmount < 4) {
  178. if(argAmount <= 0) {
  179. printf("... <type> <size> <population>\n");
  180. } else {
  181. printf("%s <type> <size> <population>\n", args[0]);
  182. }
  183. return 0;
  184. }
  185. int type = atoi(args[1]);
  186. size = atoi(args[2]);
  187. population = atoi(args[3]);
  188. if(population < 4) {
  189. population = 4;
  190. }
  191. switch(type) {
  192. case 1: fitness = getNormalFitness; break;
  193. case 2: fitness = getUltraFitness; break;
  194. case 3: fitness = getMostPerfectFitness; break;
  195. default: puts("unknown type"); return 0;
  196. }
  197. long time = -getNanos();
  198. for(int h = 0; h < 5; h++) {
  199. init();
  200. int half = population / 2;
  201. int run = 1;
  202. while(run) {
  203. sort();
  204. for(int k = half; k < population; k++) {
  205. int parent = rand() % half;
  206. reproduce(squares[parent].data, squares + k);
  207. if(squares[k].fitness == 0) {
  208. run = 0;
  209. break;
  210. }
  211. }
  212. }
  213. sort();
  214. print(squares);
  215. clear();
  216. }
  217. time += getNanos();
  218. printf("Millis: %lf\n", time / 1000000.0);
  219. return 0;
  220. }