|  | @@ -95,8 +95,8 @@ def smallValues(df):
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  def avgPerMarkerNo(df, markerNo):
 | 
	
		
			
				|  |  | -    print(f"\naverage time for {markerNo} markers")
 | 
	
		
			
				|  |  | -    print("number of measurements")
 | 
	
		
			
				|  |  | +    print(f"\nresult of {markerNo} markers\n")
 | 
	
		
			
				|  |  | +    print("number of measurements:")
 | 
	
		
			
				|  |  |      df = df.loc[df["markers"] == markerNo]
 | 
	
		
			
				|  |  |      resDf = pd.DataFrame(columns=["id", "timeMean", "rating"])
 | 
	
		
			
				|  |  |      for mapId, mapDf in df.groupby(["id"]):
 | 
	
	
		
			
				|  | @@ -109,7 +109,9 @@ def avgPerMarkerNo(df, markerNo):
 | 
	
		
			
				|  |  |                  resDf = resDf.append({"id": "mapbox_" + markerType, "timeMean": typeDf["time"].mean()}, ignore_index=True)
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      resDf = resDf.assign(rating=lambda x: (round(4-((4-0)/(max(resDf["timeMean"])-min(resDf["timeMean"]))*(x["timeMean"]-max(resDf["timeMean"]))+4))))
 | 
	
		
			
				|  |  | +    print("\naverage time:")
 | 
	
		
			
				|  |  |      print(resDf)
 | 
	
		
			
				|  |  | +    print("--------------------------------------")
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  def timeMapsHighlight(df, plotTitle="mapsHightlight.png"):
 |