|  | @@ -80,7 +80,30 @@ def smallValues(df):
 | 
	
		
			
				|  |  |      mapboxTypes(df, "mapboxSmall.png")
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +def avgPerMarkerNo(df, markerNo):
 | 
	
		
			
				|  |  | +    print(f"\naverage time for {markerNo} markers")
 | 
	
		
			
				|  |  | +    print("number of measurements")
 | 
	
		
			
				|  |  | +    df = df.loc[df["markers"] == markerNo]
 | 
	
		
			
				|  |  | +    resDf = pd.DataFrame(columns=["id", "timeMean", "rating"])
 | 
	
		
			
				|  |  | +    for mapId, mapDf in df.groupby(["id"]):
 | 
	
		
			
				|  |  | +        if mapId != "mapbox":
 | 
	
		
			
				|  |  | +            print(mapId, mapDf.shape[0])
 | 
	
		
			
				|  |  | +            resDf = resDf.append({"id": mapId, "timeMean": mapDf["time"].mean()}, ignore_index=True)
 | 
	
		
			
				|  |  | +        else:
 | 
	
		
			
				|  |  | +            for markerType, typeDf in mapDf.groupby(["type"]):
 | 
	
		
			
				|  |  | +                print(markerType, typeDf.shape[0])
 | 
	
		
			
				|  |  | +                resDf = resDf.append({"id": "mapbox_" + markerType, "timeMean": typeDf["time"].mean()}, ignore_index=True)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    resDf = resDf.assign(rating=lambda x: (round(4-((4-0)/(max(resDf["timeMean"])-min(resDf["timeMean"]))*(x["timeMean"]-max(resDf["timeMean"]))+4))))
 | 
	
		
			
				|  |  | +    print(resDf)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |  df = readFile()
 | 
	
		
			
				|  |  | +print(df.columns)
 | 
	
		
			
				|  |  | +avgPerMarkerNo(df, 100)
 | 
	
		
			
				|  |  | +avgPerMarkerNo(df, 1000)
 | 
	
		
			
				|  |  | +avgPerMarkerNo(df, 10000)
 | 
	
		
			
				|  |  |  timeMaps(df)
 | 
	
		
			
				|  |  |  mapboxTypes(df)
 | 
	
		
			
				|  |  |  smallValues(df)
 |